Bacteria of medical importance

Common Pathogenic Bacteria

Objectives

To:

- 1. Discuss some selected individual bacteria of medical importance
- 2. Describe their general characteristics
- 3. Explain the infection/diseases they cause
- 4. Describe their mode of transmission
- 5. Discuss their pathogenesis

Genus Staphylococcus

Of greatest medical importance: – S. aureus, S. epidermidis, S. saprophyticus Distinguished by: Coagulase production - Protein A on cell surface Production of recognized exotoxin – Resistance to novobiocin (5µg) - Hemolysin production

Staphylococcus aureus

- Gram-positive coccus in clusters
 White or golden color on blood agar
 Catalase and coagulase –positive
 Mannitol-positive & tolerant of salt
 Diseases/infections:
 - Skin infections
 - Post-op wound infection
 - Scalded skin syndrome (SSS)
 - Catheter-associated infections
 - Endocarditis, septicemia,
 - Osteomyelitis,
 - Pneumonia

Staphylococcus aureus

Transmission

- Skin, nose
- Contact or airborne

Epidemiologic analysis

- Methicillin-resistant strains (MRSA)
- Hospital and community outbreaks
- Bacteriophage, Pulsed-field gel electrophoresis (PFGE)

Staphylococcus aureus

Pathogenesis

- Coagulase
- Mucopeptide

 Extracellular products – enterotoxins, epidermolytic toxin, toxic shock syndrome toxin, membrane-damaging toxins (haemolysins), leukocidin, staphylokinase

Staphylococcus epidermidis

- Catalase positive, coagulase-negative, mannitol negative
- Produces extra-cellular slime
- Infections
 - Opportunistic infections associated with deviceassociated sepsis, e.g.:
 - catheter-related sepsis, prosthetic valve endocarditis, infection of artificial joints and shunt infection.
 - Urinary tract infection (UTI)
 - Sternal wound osteomyelitis

Staphylococcus saprophyticus

Catalase-negative, coagulase-negative
 Whitish colony on Blood agar
 Resistant to novobiocin

Infections

 UTI (Honeymoon cystitis) in previously healthy women

Genus Streptococcus

- Gram-positive in chains
- Medically significant streptococci are divided according to:
 - Hemolysis on blood agar beta (β), alpha (α) or gamma (γ) -hemolysis
 - Presence of group specific carbohydrate antigen i.e. Lancefield groups A, B, C, D -V

Beta (β)-hemolytic streptococci

Streptococcus pyogenes (GAβ-HS or GAS)

Infections

- Pharyngitis
- Cellulitis
- Erysipelas
- Lymphadenitis
- Scarlet fever
- Non-suppurative sequelae acute glomerulonephritis and rheumatic fever

Streptococcus pyogenes

Transmission

Airborne droplet or by contact

Pathogenesis

Elaborates many enzymes and exotoxins:

 Erythrogenic toxin, streptolysins, streptokinase A and B, deoxyribonuclase, hyaluronidase ('spreading factor')

Streptococcus agalactiae

Group B β-hemolytic Streptococcus (GBS)
 Gram-positive coccus in chains

Infections

 Neonatal meningitis and septicemia, pneumonia, UTI and soft tissue infection in adult diabetics.

Transmission

- From gut and vagina

Pathogenesis

Virulence factors not clearly identified.

Streptococcus pneumoniae

- Alpha (α)-hemolytic Streptococcus
- Gram-positive cocci in pairs i.e. diplococci
- Optochin positive
- Bile soluble
- Infection
 - Pneumonia
 - Meningitis
 - Septicemia
 - Otitis media, sinusitis
- Transmission is via droplet spread
- Pathogenesis
 - Capsule, pneumolysin
 - Splenectomy, splenic dysfunction, sickle cell disease

Listeria monocytogenes

- Short Gram-positive rod
- Motile with 'tumbling' movement
- Hemolytic on sheep or horse blood agar
- Infections
 - Meningitis & sepsis in neonates
 - Sepsis on immunocompromized patients and in pregnant women
- Transmission
 - Ingestion of contaminated food
 - Transplacental
- Pathogenesis
 - Internalins (cell attachment factors), haemolysins, motility protein, survives inside phagocytes

Mycobacterium spp

Characteristics

- Gram-positive cell wall structure
- Stains with difficulty because of long-chain fatty acid (mycolic acid) in cell wall.
- Acid fast: stains with Ziehl-Neelsen stain
- Growth 3-7 days; some 6 8 weeks
- All, except *M. leprae*, can be grown on artificial culture
- Intracellular parasites

Mycobacterium spp

Infection

M. tuberculosis

 Pulmonary tuberculosis and extra-pulmonary diseases, e.g. meningitis, vertebral osteomyelitis

M. leprae

Leprosy

Mycobacterium other than M. tuberculosis (MOTT)

 Atypical pneumonia in immunocompromized hosts, e.g. AIDS patients

Mycobacterium spp

Transmission

- Droplet
- Unpasteurized milk
- Leprosy requires close contact

Pathogenesis

- Both M. tuberculosis and M. leprae are intracellular
- Give rise to slowly developing chronic conditions
- Pathology due to host immune responsiveness

Treatment & prevention:

- Prolonged with combination of drugs
- BCG vaccination
- Pasteurization of milk
- Increased hygienic standards

Enterobacteriaceae

Gram-negative aerobic rods

Normal flora of human and animal gut

Facultative anaerobes

Escherichia coli

- Gram-negative aerobic rod
- Facultative anaerobe
- Grows on bile-containing selective media (MacConkey)
- Ferments lactose (LF)
- Infections
 - UTI
 - Diarrhoeal diseases
 - Neonatal meningitis
 - Septicemia

Escherichia coli

Transmission

 Spreads by contact and ingestion, food-associated, endogenous

Pathogenesis

- Endotoxin
- Adhesins P fimbriae, colonization factors
- Capsule K1 capsular type (neonatal meningitis
- Enterotoxins diarrheal diseases: Enterotoxigenic *E. coli* (ETEC), Enteroinvasive *E. coli* (EIEC), Enterohaemorrhagic *E. coli* (EHEC) produce verotoxin-associated with hemolytic ureamic syndrome (HUS)

Salmonella spp

Gram-negative rods
Not member of the normal flora of the gut
Motile

All, except *S. typhi*, are non-capsulated
 Typhoidal and non-typhoidal Salmonella
 Survive in the reticulo-endothelia system

Non-typhoidal Salmonella spp

- Contains over 2000 species
- Do not ferment lactose (NLF)

Diseases/infection

- Diarrhoea
- Bacteremia, septicemia
- Osteomyelitis in sickle cell disease patients

Transmission

- Widespread in animals, encountered in food chain, e.g. poultry, egg, meat, milk & cream
- Ingestion of contaminated food and person-to-person via fecal-oral route

Typhoidal Salmonella spp

- S. typhi, S. paratyphi A, S. paratyphi B and S. paratyphi C
 - Capsulated
 - Human pathogens only

Diseases

- Systemic infection
- Enteric fever typhoid fever

Transmission:

- Fecal-oral route, via contaminated water and food
- Carriers are important source

Treatment

No antibiotics for salmonella diarrhea, except severe and invasive Fluid replacement Antibiotics needed for enteric fever - Ciprofloxacin - Chloramphenicol - Cefotaxime

Gram-positive sporing anaerobes

Clostridium perfringens - Gas gangrene Food poisoning Clostridium tetani – Tetanus Clostridium difficile - CDAD - AAD, AAC, PMC Clostridium botulinum - Food poisoning - botulism

Gram-negative non-spore-forming anaerobes

- Short Gram-negative anaerobic rods
- Bacteroides spp
 - Found in normal human gut flora

Prevotella spp

- Found in the genitourinary tract
- Black-brown pigmented

Porphyromonas spp

- Black pigmented part of the normal oral flora
- Fusobacterium spp
 - Found in the oral cavity

Bacteroides fragilis

- Most important NSA causing infection
- Small pleomorphic Gram-negative rod

Infection

- Usually mixed with aerobes and microaerophilic
- Intra-abdominal sepsis
- Liver abscess
- Aspiration pneumonia
- Brain abscesses
- Wound infections

Transmission

- Endogenous
- Contamination with fecal content

Bacteroides fragilis

Specimens

- Pus
- Biopsy materials
- Transtracheal aspiration
- Process under anaerobic conditions

Treatment

- Incision & drainage
- Metronidazole
- Clindamycin
- Carbapenems

Chlamydia

Small Gram-negative bacteria Obligate intracellular parasites Lack peptidoglycan Lack ability to produce ATP C. trachomatis C. pneumoniae C. psittaci

Chlamydia

Infections

Atypical pneumonia Trachoma Inclusion conjunctivitis Ophthalmia neonatorum Genital infections Psittacosis Perihepatitis

Chlamydia

Transmission

- Inhalation
- Contaminated bird litter
- Direct sexual contact

Laboratory detection

- Cell culture
- Immunofluorescence
- Serology

Treatment

- Tetracycline, erythromycin, fluoroquinolones
- No vaccine available

Mycoplasma

Lack true cell wall

- Flexible triple-layer of protein and lipids
- Contains cholesterol in the cell membrane (absent in other bacteria)
- Important species:
 - M. pneumoniae
 - M. hominis
 - Ureaplasma urealyticum

Mycoplasma

Diseases/infections
Atypical pneumonia
Non-gonococcal urethritis
Pelvic inflammatory disease (PID)
Joint sepsis

Transmission

Person-to-person and sexual contact

Rickettsia

Gram-negative bacteria
 Require coenzyme A, NAD, ATP
 Obligate intracellular parasites

Diseases/infections:

Typhus, Rocky mountain, Mediterranean and other spotted fevers; Q fever

Transmission

- Bite of ticks, fleas, mite and lice

Rickettsia

Treatment:

 Tetracycline, fluoroquinolones, chloramphenicol

Vaccine available for at risk individuals

Laboratory diagnosis

- Isolation difficult.
- Mainly diagnosed by serology

Recommended Reference

Medical Microbiology, 15th Edition, ed. David Greenwood, Richard Slack, John Peuther, Published by Church Livingstone, Edinburgh, London.